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STOCHASTIC OPTIMAL CONTROL VIA BELLMAN’S
PRINCIPLE

Luis G. Crespo∗ and Jian Q. Sun†

ABSTRACT

This paper presents a method for finding optimal controls of nonlinear systems subject

to random excitations. The method is capable to generate global control solutions

when state and control constraints are present. The solution is global in the sense

that controls for all initial conditions in a region of the state space are obtained.

The approach is based on Bellman’s Principle of optimality, the Gaussian closure and

the Short-time Gaussian approximation. Examples include a system with a state-

dependent diffusion term, a system in which the infinite hierarchy of moment equations

cannot be analytically closed, and an impact system with a elastic boundary. The

uncontrolled and controlled dynamics are studied by creating a Markov chain with

a control dependent transition probability matrix via the Generalized Cell Mapping

method. In this fashion, both the transient and stationary controlled responses are

evaluated. The results show excellent control performances.

keywords: Stochastic optimal control, Bellman’s principle, Cell mapping, Gaussian

closure.

1 INTRODUCTION

Optimal control of stochastic nonlinear dynamic systems is an active area of research due
to its relevance to many engineering applications. This is a very difficult problem to study,
particularly when the system is strongly nonlinear and there are constraints on the states
and the control. Optimal feedback controls for systems under white-noise random excitations
may be studied by the Pontryagin maximum principle, Bellman’s principle of optimality and
the Hamilton-Jacobi-Bellman (HJB) equation. When the control and the state are bounded,
the direct solution of the HJB equation faces exigent difficulties since it is multidimensional,
nonlinear and defined in a domain that in general might not be simply connected. The
theory of viscosity solutions, first introduced by Crandall et. al. [21], provides a convenient
framework for studying the HJB equation. Very few closed form solutions to this problem
have been found so far. Dimentberg et al. found the analytical solutions of the optimal
control of a linear spring mass oscillator with Lagrange and Mayer cost functionals in a
region of the phase space [2, 8].

Given the intrinsic complexity of the problem, we must resort to numerical methods to
find approximate control solutions [1, 11]. While some numerical methods of solution to
the HJB equation are known, they usually require knowledge of the boundary/asymptotic
behavior of the solution in advance [2]. Relatively few problems are known today which are
solved through the use of the HJB equation. Zhu et al. proposed a strategy for optimal
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feedback control of randomly excited structural systems based on the stochastic averaging
method for quasi-Hamiltonian systems and the HJB equation [22].

The cell mapping methods, originally developed by Hsu, have been applied to the optimal
control problem of deterministic systems [9]. Strategies to solve optimal control problems
with fixed final time [4] and fixed final state [5] terminal conditions have been developed and
applied. The Generalized Cell Mapping (GCM) method is a very effective tool for studying
the global behavior of strongly nonlinear stochastic system. The GCM method is integrated
with the Short-time Gaussian Approximation (STGA) scheme to provide a very efficient way
for constructing Markov chains that describe the global dynamics of the system [10, 16, 18].
In this paper, these tools are extended to the stochastic control problem. Specifically, we
use Bellman’s Principle of optimality and the STGA to generate global control solutions to
stochastic control problems with fixed-state terminal conditions and state and/or control
constraints.

The current method, that involves both analytical and numerical steps, offers several
advantages. It can handle strongly nonlinear and non-smooth systems, can include various
state and control constraints and leads to global solutions. Former developments on the
subject can be found in [3], where numerical and analytical solutions were successfully com-
pared. In this paper several extensions to that work are proposed and evaluated. The content
of this paper is organized as follows. Section 2 briefly introduces the problem formulation
and the Bellman’s principle. The analytical and numerical parts of the solution method are
presented in Section 3. Examples are provided in Section 4, where the following systems
are controlled: a nonlinear system with a state-dependent diffusion part, a system with
non-analytically closeable terms and an impact system with a reflective boundary condition.
Some conclusions are stated in Section 5.

2 STOCHASTIC OPTIMAL CONTROL

2.1 Problem Formulation

Consider a system governed by stochastic differential equation (SDE) in the Stratonovich
sense:

dx(t) = m(x(t),u(t))dt + σ(x(t),u(t))dB(t) (1)

where x (t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, B(t) is a vector of
independent unit Wiener processes and the functions m(·) and σ(·) are in general nonlinear
functions of their arguments. By using Itô’s formula [14], we obtain the corresponding Itô
SDE:

dx(t) =

(

m(x,u) +
1

2

∂σ(x,u)

∂x
σ(x,u)T

)

dt + σ(x,u)dB(t) (2)

The associated Fokker-Planck-Kolmogorov (FPK) equation for the conditional probability
density function (PDF) ρ(x, t0|x0, t0) is given by:

∂ρ

∂t
= − ∂

∂x

[

ρ

(

m(x,u) +
1

2

∂σ(x,u)

∂x
σ(x,u)T

)]

+
1

2

∂2

∂x2

[

ρσ(x,u)σ(x,u)T
]

(3)

Define the cost functional as:

J(u,x0, t0, T ) = E

[

φ(x(T ), T ) +

∫ T

t0

L(x(t),u(t))dt

]

(4)
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where [t0, T ] is the time interval of interest, φ(x(T ), T ) is the terminal cost, and L(x(t),u(t))
is the Lagrangian function. The optimal control problem is to find a control u(t) within a
set U ⊂ Rm on the time interval [t0, T ] that drives the system from a given initial condition
x(t0) = x0 to the target set defined by Ψ(x(T ), T ) = 0 such that the cost J is minimized.

2.2 Bellman’s Principle of optimality

Let (x∗,u∗) be an optimal control solution pair over the time interval [t0, T ] subject to the
initial condition x(t0) = x0. Let t̂ be a time instant such that t0 ≤ t̂ ≤ T. Then, (x∗,u∗) is
still the optimal control solution pair from [t̂, T ] subject to the initial condition x(t̂) = x∗(t̂).

Let V (x0, t0, T ) = J(u∗,x0, t0, T ) be the so-called value function or optimal cost function.
Bellman’s principle of optimality can be stated as [21]:

V (x0, t0, T ) = inf
u∈U

E

[

∫ t̂

t0

L(x(t),u(t))dt +

∫ T

t̂

L(x∗(t),u∗(t))dt + φ(x∗(T ), T )

]

(5)

where t0 ≤ t̂ ≤ T. Consider the optimal problem of the system starting from xi in the
time interval [iτ, T ] where τ is a discrete time step. Define an incremental cost and an
accumulative cost as:

Jτ = E

[

∫ (i+1)τ

iτ

L(x(t)u(t))dt

]

(6)

JT = E

[

φ(x∗(T ), T ) +

∫ T

(i+1)τ

L(x∗(t),u∗(t))dt

]

(7)

where (x∗(t),u∗(t)) is the optimal solution pair over the time interval [(i + 1)τ, T ]. Then,
Bellman’s principle of optimality can be restated as:

V (xi,iτ, T ) = inf
u∈U

{Jτ + JT} (8)

The incremental cost Jτ is the cost for the system to march one time step forward starting
from a deterministic initial condition xi. The system lands on an intermediate set of the state
variables. The accumulative cost JT is the cost for the system to reach the target set starting
from this intermediate set, and is calculated through the accumulation of incremental costs
over several short time intervals between (i + 1)τ and T .

Bellman’s principle of optimality as stated in Equation (8) suggests that one can obtain a
local solution of the optimal control problem over a short time interval τ to form the global
solution provided that certain continuity conditions on the solution are satisfied. In this
paper, we shall impose such conditions in the probability sense. This is explained later in
the paper. The global solution consists of all the intermediate solutions that are constructed
backward in time starting from the terminal condition φ(x(T ), T ) at time T .

3 THE SOLUTION APPROACH

3.1 Background

We need to evaluate the expected values in Equations (6) and (7) for a given control. For
this we need the conditional probability density function ρ(x, τ |x

0
, 0) which satisfies the
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FPK equation associated with the process. For a given feedback control law u = f(x(t)), the
response x(t) is a stationary Markov process [12]. For a very small τ , this density function
ρ(x, τ |x

0
, 0) is known to be approximately Gaussian within an error of order O(τ 2) [14].

When ρ(x, τ |x
0
, 0) is Gaussian, only the first and second order moments of x(t) need to

be evaluated in order to completely specify the PDF. We can readily derive the moment
equations from the Itô equation (2). When the system is nonlinear, the moment equations
can be closed by applying the Gaussian closure method [12, 17], which is consistent with the
short-time Gaussian approximation.

The short-time conditional probability density function ρ(x, τ |x
0
, 0) gives a probabilistic

description of the system response x(t). The short-time solution has been implemented
in two ways in the literature. The first one is the path integral [13, 19, 20], which treats
the phase space as a continuum. The second approach is the cell mapping method, which
discretizes the phase space into small regions, called cells. Since the path integral often has
to be evaluated numerically, discretization of the phase space is inevitable.

3.2 The backward search algorithm

The backward solution process starts from the last segment over the time interval [T − τ, T ].
Since the terminal condition for the last segment of the local solutions is specified, we can
obtain a family of local optimal solutions for all possible initial conditions x(T − τ). Then,
repeat this process to obtain the next segment of the local optimal solution over the time
interval [T − 2τ, T ] subject to the continuity condition at t = T − τ .

In general, the optimal control in the time interval [iτ, T ] is determined by minimizing the
sum of the incremental cost and the accumulative cost in Equation (8) leading to V (xi,iτ, T )
subject to the continuity condition x((i+1)τ) = x∗

i+1 where x∗
i+1 is a set of initial conditions

used in the problem with time interval [(i + 1)τ, T ]. x∗
i+1 is a random variable. The equality

x((i+1)τ) = x∗
i+1 has to be interpreted in a probabilistic sense. In this paper, it is interpreted

in the sense of maximum probability. Quantitatively, this is done as follows.
In theory, the conditional PDF ρ(x, τ |x

0
, 0) of a diffusion process even for a very short

time τ will cover the entire phase space. Let Ω be the extended target set to be defined later
such that x∗

i+1 ∈ Ω. For a given control, we define PΩ as:

PΩ =

∫

x∈Ω

ρ(x, τ |xi, 0)dx (9)

PΩ represents the probability that the system enters the extended target set Ω in time τ
when it starts at xi with probability one. The controlled response x(t) starting from a set of
initial conditions xi will become a candidate for the optimal solution when PΩ is maximal
among all the initial conditions under consideration.

Since we shall use a cellular structure of the phase space, we consider a finite region
D ⊂ Rn and discretize D into a countable number of small cells. Let U denote a countable
set consisting of all the admissible controls ui (i = 1, 2, · · · , I). We shall assume that the
control is constant over each time interval [iτ, (i + 1)τ ]. Let Ω ⊂ Rn denote the set of
cells that form the target set defined by Ψ(x(T ),T ) = 0. As the backward solution steps
proceed, the set Ω will be expanded. Assume that the terminal cost JT is E[φ(x(T ), T )].
The backward algorithm for searching the optimal control solutions is stated as follows:
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1. Find all the cells that surround the target set Ω. Denote the corresponding cell centers
as zj.

2. Construct the conditional probability density function ρ(x, τ |zj, 0) for each control ui

and for all cell centers zj. Let us call every combination (zj,ui) a candidate pair.

3. Calculate the incremental cost Jτ (zj,ui), the accumulative cost JT (z∗k,u
∗
ı̂ ) and PΩ for

all candidate pairs. z∗k is an image cell of zj in Ω, and u∗
ı̂ is the optimal control

identified for z∗k in previous iterations.

4. Search for the candidate pairs that minimize Jτ (zj,ui) + JT (z∗k,u
∗
ı̂ ) and satisfy PΩ <

Θmax{PΩ}, where 0 < Θ < 1 is a factor set in advance. Denote such pairs as (z∗
j ,u

∗
i ).

5. Save the minimized accumulative cost function JT (z∗j ,u
∗
i ) = Jτ (z

∗
j ,u

∗
i )+JT (z∗k,u

∗
ı̂ ) and

the optimal pairs (z∗k,u
∗
ı̂ ).

6. Expand the target set Ω by including the cells z∗
j .

7. Repeat the search from Step (1) to Step (6) until all the cells in the entire region D

are processed or until the original initial condition x0 of the optimal control problem
is reached.

As a result, the optimal control solution for all the cells covered by Ω is found. The
choice of image cells, i.e. x∗

i+1, could certainly by biased. This however, is avoided by using
(i) non-uniform integration times such that the growth of Ω is gradual, i.e. mapping most of
the probability to neighboring cells, and (ii) by restricting the potential optimal pairs to be
candidate pairs with high PΩ. These considerations led to the same global control solution
regardless of the cell size [5].

The resulting dynamics of the conditional PDF is simulated using the Generalized Cell
Mapping Method (GCM) [6]. Notice that if a simulation is done for a long time all probability
will eventually leave D. This is a consequence of using a finite computational domain to
model a diffusion process, therefore all numerical simulations face this problem. While
some probability is leaking out from D, probability mass is also being brought back from
its complement. In this study the computational domain is set such that the leakage of
probability during the transient controlled response is very small.

4 EXAMPLES

4.1 State dependent diffusion terms

Consider the dynamic system:

ẍ + µ(g + v̈)sgn(ẋ) + 2ζẋ + ω2
ox + εx3 = f̈ + u(t), (10)

where x(t) describes the horizontal sliding motion of a mass block placed on a moving
foundation with rough contact surface and u(t) is a bounded force satisfying |u| ≤ û = 1
[15, 16]. ζ is the viscous damping coefficient, µ is the dry friction damping coefficient, g
is the gravitational acceleration, ω0 is the natural frequency of the linear system and ε is
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the nonlinear stiffness coefficient. Assume that f̈ and v̈ are correlated Gaussian white noise
processes such that:

E
[

f̈
]

= 0, E [v̈] = 0, E
[

v̈(t)f̈(t′)
]

= 2Dvfδ(t − t′),

E [v̈(t)v̈(t′)] = 2Dvδ(t − t′), E
[

f̈(t)f̈(t′)
]

= 2Dfδ(t − t′).

Let x1 = x and x2 = ẋ. The cost functional to be minimized is defined as:

J = E

[
∫ ∞

t0

(α|x|2 + βu2)dt

]

. (11)

The control objective is to drive the system from any arbitrary initial condition to the origin
of the phase space while J is minimized. Following the rules of the Itô calculus, we convert
Equation (10) into a set of stochastic differential equations (SDEs) in the Itô sense:

dx1 = x2dt,

dx2 =
[

−µgsgn(x2) − 2ζx2 − ω2
ox1 − εx3

1 + µ2Dvsgn(x2)sgn′(x2) + µDvf sgn′(x2) + u
]

dt

+
[

2µ2Dvsgn2(x2) + 4µDvfsgn(x2) + 2Df

]1/2
dB(t), (12)

where B(t) is a unit Wiener process satisfying E[B(t)] = 0, E[B(t)B(t′)] = t − t′ where
t > t′. Details of the derivation of Equation (12) are given in Appendix A. An infinite
hierarchy of moment equations for the state variables can be derived from the Itô equation.
Defining mij = E[xi

1x
j
2], and applying the Gaussian closure method by using the expressions

in Appendix C, we obtain a set of nonlinear differential equations for the first and second
order moments:

ṁ10 = m01 ṁ20 = 2c12 + 2m10ṁ10

ṁ01 = µgsgn(m01)erf (|m01|/
√

2σ2) − 2ζm01 − ω2
om10 − εm10(3σ

2
1 + m2

10)

+ µDvf (2/
√

2πσ2) exp(−1

2
(m01/σ2)

2) + u

ṁ11 = σ2
2 − 2ζc12 − ω2

oσ
2
1 − 3εσ2

1(σ
2
1 + m2

10) − µg
√

2/π(c12/σ2) exp(−1

2
(m01/σ2)

2)

− µDvf (c12m01/
√

2/πσ3
2) exp(−1

2
(m01/σ2)

2) + m10ṁ01 + ṁ10m01 (13)

ṁ02 = −4ζσ2
2 − 2ω2

oc12 − 6εc12(σ
2
1 + m2

10) − 2µg
√

2/πσ2 exp(−1

2
(m01/σ2)

2)

− µDvf

√

2/π(m01/σ2) exp(−1

2
(m01/σ2)

2) + 2µ2Dv + 2Df + 2m01ṁ01

+ 4µDvf sgn(m01)erf (|m01|/
√

2σ2)

where c12 = m11 − m01m01, σ2
1 = m20 − m2

10 and σ2
2 = m02 − m2

01. Here, c12 is the
covariance, σ2

1 and σ2
2 are the variance of x1 and x2 respectively.

The initial conditions required to integrate Equations (13) from t = 0 to t = τ are
specified by the coordinates of a cell center (x1, x2), i.e. m10(0) = x1, m01(0) = x2, m20(0) =
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x2
1, m02(0) = x2

2 and m11(0) = x1x2. After obtaining the time evolution of the first and
second order moments, we construct a joint Gaussian probability density function (PDF)
for (x1, x2) from time t = 0 to t = τ. With this PDF, the cost functional and other response
statistics over one time step τ can be readily calculated. The system is parametrically and
externally excited and diffusion term is a nonlinear function of the state.
Numerical solutions and discussion

We consider a region D = [−2, 2] × [−2, 2]. It is discretized with 25 × 25 = 625 uniform
cells. The parameters of the system are set as follows: µ = 0.05, ζ = 0.1, ω0 = 1, ε = 1,
Dv = 0.1, Df = 0.1, and Dvf = 0. The Lagrangian of the cost function in Equation (11)
is specified using α = β = 0.5 and the control set is uniformly discretized into 11 levels:
u ∈ {−1,−0.8, · · · , 1}.

The reader must notice that there is a region on the x1-axis about the origin, where the
mean trajectories of the uncontrolled response are trapped due to the effect of dry friction.
In Equation (13), when the term µgsgn(m01)erf (|m01|/

√
2σ2) is dominant, a never ending

sequence of changes in the sign of x2 takes place. This term causes the response to switch
indefinitely about the trapping region without having a net displacement. Figure 1 shows
the vector field of the mean trajectory for the controlled response. The size of the arrows
about the origin is enlarged to enable better observation. Jumps in the velocity are still
present, but the trapping region on the x1-axis is not. These jumps show that the velocity
just before and after reaching maximum elongation of the spring differ in magnitude.

Now we evaluate the time evolution of the system response starting from a uniformly
distributed initial condition. This initial condition allows us to study the control performance
on the entire computational domain. The out crossing of any boundary of D is an irreversible
process in the sense that D̄ acts as a sink cell [10]. The reader should notice that such
boundaries are leaking probability and eventually will absorb all of it. This however, is a
mere consequence of having a bounded computational domain. In order to circumvent this
difficulty, we define stationarity as the state in which the leakage of probability is stable and
considerably small, e.g. both the probability of the system remaining in D and the expected
value of the Lagrangian approach to a constant value with very small changes thereafter.
Time evolutions starting from this pseudo-stationary state will be governed by the diffusion
component of the dynamics.

The stationary PDF of the uncontrolled system response is shown in Figure 2. Station-
arity is reached after 10 time units when the 67% of the probability remains in D. Figure 3
shows the stationary PDF for the controlled response. The controlled response keeps 82%
of the probability in D and reaches stationarity in about 7 time units. In order to evaluate
the control performance, the leakage of probability to the outside of D must be taken into
consideration. We propose the following quantity to evaluate the control performance:

JD(t) =
E [L(x(t),u(t))]

PD(t)
(14)

where PD(t) is the probability of the system of being in D as defined in Equation (9). Figure
4 shows the time evolutions of JD and PD for both the uncontrolled and controlled system
responses. By comparison we conclude that (i) the controlled response reaches the target
with less cost, (ii) the stationary PDF of the controlled system is more highly concentrated
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around the desired target set, (iii) a faster convergence to the stationary PDF takes place
and (iv) a higher percentage of the probability PD(t) is kept in the domain D.

4.2 Non-analytically closeable terms

The closure methods can readily handle polynomials. However, for other types of nonlin-
earities the closure might not only require tedious and lengthy integrations [16], but also
might lead to expressions that don’t admit a closed form. This problem prevents us from
integrating the system of moment equations even numerically. In order to overcome this
difficulty we make use of the cellular structure of the state space by approximating such
nonlinearities with Taylor expansion. Once the approximations are available, the infinite
hierarchy of moments can be readily closed. We illustrate this approach next.

The example is concerned with the problem of driving a boat in a vortex field. The boat
moves on the (x1, x2) plane with a constant velocity relative to the water. Let the control u
be the heading angle with respect to the positive x1-axis. The velocity field of the water is
given by v(x1, x2) = ar/(br2 + c) where r =

√

x2
1 + x2

2 is the distance to the origin, i.e. the
center of the vortex. The equation of motion of the boat is described by the SDE equations
in the Stratonovich sense:

ẋ1 = cos(u) − vx2/r + αvw1, (15)

ẋ2 = sin(u) + vx1/r + αvw2,

where α is a constant, w1 and w2 are correlated Gaussian white noise processes with
zero mean such that E [w1(t)w1(t

′)] = 2D1δ(t − t′), E [w2(t)w2(t
′)] = 2D2δ(t − t′) and

E [w1(t)w2(t
′)] = 2D12δ(t − t′). The control objective is to drive the boat from an initial

condition to the target set defined by Ψ such that the cost function:

J = E

[
∫ T

t0

λv(x1, x2)dt

]

, (16)

is minimized. Here, we assume that the risk of navigating on the vortex is proportional to the
tangential component of the vortex velocity. λ is a scaling constant. The cost in Equation
(16) represents the cumulative risk associated with the selected path. The derivation of the
Itô equations is shown in Appendix B.

Consider a special case when the white noise processes are uncorrelated. The first and
second order moments of the state variables are derived as:

ṁ10 = cos(u) − E
[x2v

r

]

+ α2D1E

[

v
∂v

∂x1

]

ṁ01 = sin(u) + E
[x1v

r

]

+ α2D2E

[

v
∂v

∂x2

]

ṁ20 = 2m10 cos(u) − 2E
[x1x2v

r

]

+ 2α2D1E

[

x1v

r

∂v

∂x1

]

+ 2α2D1E
[

v2
]

(17)

ṁ02 = 2m01 sin(u) + 2E
[x1x2v

r

]

+ 2α2D2E

[

x2v

r

∂v

∂x2

]

+ 2α2D2E
[

v2
]

ṁ11 = cos(u)m01 − E

[

x2
2v

r

]

+ α2D1E

[

x2v

r

∂v

∂x1

]

+ sin(u)m10 + E

[

x2
1v

r

]

+ α2D2E

[

x1v

r

∂v

∂x2

]
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Several expected values such as E
[

x2v
r

]

in the above moment equations cannot be ana-
lytically expressed by the lower order moments. That is to say, the Gaussian closure method
cannot be used to analytically close the infinite hierarchy of the moment equations.

Consider an initially delta PDF function to evolve over a short mapping time step τ . The
one step PDF function at t = τ will still be concentrated in a small region with a mean not
far away from the initial condition [14]. This fact suggests us to expand the non-analytically
closeable functions about the initial condition, i.e. a cell center, in a Taylor series. The
Taylor series provides an accurate representation of these nonlinear functions in a small
neighborhood where the one step PDF function at t = τ is defined. The polynomials of the
Taylor series allow us to analytically express the higher order moments in terms of the lower
order ones according to the Gaussian closure method.

Let f(x1, x2) denote a non-analytically closeable function such as x2v
r

in Equation (17).

A second order Taylor approximation f̃(x1, x2) is given by:

f̃(x1, x2) = β1 + β2x1 + β3x2 + β4x
2
1 + β5x1x2 + β6x

2
2, (18)

where the coefficients are calculated from the following conditions:

f(x1, x2)|z = f̃(x1, x2)|z, fx1x2
(x1, x2)|z = f̃x1x2

(x1, x2)|z,
fx2

(x1, x2)|z = f̃x2
(x1, x2)|z, fx1

(x1, x2)|z = f̃x1
(x1, x2)|z,

fx1x1
(x1, x2)|z = f̃x1x1

(x1, x2)|z, fx2x2
(x1, x2)|z = f̃x2x2

(x1, x2)|z.

In these equations, z stands for the state coordinates of the initial cell center and the
subindices of the function refer to the partial derivative with respect to the state variable.

The Taylor expansion is for each initial cell z, and is used only to integrate the moment
equations over a short time interval (0, τ).

Numerical solutions and discussion

The region D = [−2, 2] × [−2, 2] is discretized with 1089 square cells. A set of 30 evenly
spaced angles values is taken as the control set, i.e. U = {−π,−14π/15, ..., 14π/15}. Notice
that the set U represents an unbounded circular set of controls. The system parameters are
chosen as follows: λ = 1, a = 15, b = 10, c = 2, α = 1, D1 = 0.05 and D2 = 0.05. Let Ω

be the set of cells that form a discrete representation of the target set Ψ = {x1 = 2, x2}. Ω

consists of the cells in the rightmost column of the discretized domain D.
Figure 5 shows the mean vector field of the vortex. A trajectory of the boat freely moving

in the vortex starting from x = (0,−1) is superimposed. The center of the vortex attracts
probability due to the state dependence of the diffusion term and not to the existence of an
attracting point at the origin. This behavior does not have a corresponding counterpart in
the deterministic case. The time evolutions for E[L] and the first and second order moments
are shown in Figure 6.

The vector field for the mean of the controlled response is shown in Figure 7. The
trajectory of the boat under the optimal navigation starting from the same initial condition
as in Figure 5 is superimposed. The corresponding time evolutions are shown in Figure 8. In
the process, the control keeps the system in D with probability one. A discontinuity in the
vector field exists in spite of having an unbounded control set. Such a discontinuity implies

9



a dichotomy in the long term behavior of the controlled response depending on the initial
state of the system.

While from the initial conditions above the discontinuity, the control will guide the boat
against the velocity field of the vortex, from the initial conditions under, the control will
move the boat in the direction of the current. Figure 9 shows the controlled response of a
system starting from the deterministic initial condition x = (0.8,−0.32) after 3 time units.
The two-peak density function occurs due to the discontinuity in the global control solution.
Due to the diffusion effect of the random excitation, probability density functions that reach
the discontinuity will bifurcate into two parts.

4.3 Singular boundary conditions

A vibro-impact system with a one-sided rigid barrier subject to a Gaussian white noise
excitation is considered. The impact is assumed to be perfectly elastic. The control of
the vibro-impact system is then subject to a state constraint given by the one-sided rigid
barrier. Such a constraint makes the solution of optimal control problem very difficult to
obtain analytically.

A transformation of the state variables is used to effectively remove the non-smooth
state constraint. The optimal control problem with fixed terminal conditions is accordingly
transformed to the new domain and solved with the proposed method. Then, the control
solution is transformed back to the physical domain, where it is evaluated using the GCM
method.

In the transformed domain the solution satisfies the constraints. However, the control
constraint may be violated when the solution is transformed to the physical domain. For
systems with optimal bang-bang solutions, the inverse transformation preserves the control
bounds, and therefore all constraints are satisfied.

The equation of motion for the vibro-impact system is given by:

ÿ + θ(y2 − 1)ẏ + 2ζΩẏ + Ω2y = u(t) + w(t), (19)

subject to the impact condition:

ẏ(t−impact) = −ẏ(t+impact) at y(timpact) = −h,

where timpact is the time instant at which the impact occurs, y(t) is the displacement, w(t)
is a Gaussian white noise process satisfying E[w(t)] = 0, E[w(t)w(t + ξ)] = 2Dδ(ξ) and u(t)
is a bounded control satisfying |u| ≤ û.

Equation (11) with β = 0 is used here. The control objective is to drive the system from
any arbitrary initial condition to the origin of the phase space, i.e. Ψ(y,ẏ) = (0, 0), while
the energy of the system is minimized. The computational domain is chosen to be Dy =
[−h, a] × [−v, v]. As suggested in reference [7], we introduce the following transformation
y = |x| − h. This leads to the SDE for x:

ẍ + θ(x2 − 2h|x| + h2 − 1)ẋ + 2ζΩẋ + Ω2x = sgn(x)(u(t) + w(t) + hΩ2). (20)

Now, the transformed domain is given by Dx = [−2h, 2a]× [−v, v], the target set is Ψ(x,ẋ) =
(±h, 0), and the cost functional is given by:

Jx = E

[
∫ ∞

t0

[

(|x| − h)2 + ẋ2
]

dt

]

(21)
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Let x1 = x and x2 = ẋ. The Itô SDE of the system is given by:

dx1 = x2dt (22)

dx2 =
(

−θx2
1x2 + 2θh|x1|x2 − (θΓ + 2ζΩ)x2 − Ω2x1 + sgn(x1)∆

)

dt + sgn(x1)
√

2DdB

where B(t) is a unit Wiener process, ∆ ≡ u + hΩ2 and Γ ≡ h2 − 1. The first and second
order moment equations of the state variables are given by:

ṁ10 = m01, ṁ20 = 2m11

ṁ01 = −θm21 + 2θhE[|x1|x2] − (θΓ + 2ζΩ)m01 − Ω2m10 + E[sgn(x1)]∆,

ṁ11 = m02 − θm31 + 2θhE[|x1|x1x2] − (θΓ + 2ζΩ)m11 − Ω2m20 + E[x1sgn(x1)]∆ (23)

ṁ02 = −2θm22 + 4θhE[|x1|x2
2] − 2 (θΓ + 2ζΩ)m02 − 2Ω2m11 + 2E[x2sgn(x1)]∆ (24)

+ 2DE[sgn(x1)
2]

Formulas in Appendix C can be used to close the above moment equations according
to the Gaussian closure method. Next, we apply the current method and solve for optimal
controls in the state domain Dx with the cost function Jx and the target set Ψ(x,ẋ). After
obtaining the global optimal control solution u∗(x1, x2), we transform it back to the original
domain leading to the optimal control of the original system u∗(y, ẏ). Notice that in general,
this process leads to controls that don’t preserve the control constraints in Dy

The optimal control in both domains is bang-bang. The bang-bang control is fully de-
termined by the switching curves in the phase space. From the solution u∗(x1, x2), we find
numerical approximations of such curves and then we transform them back to the physical
state space.

Numerical solutions and discussion

In the numerical example, we have chosen: û = 1, h = −1, a = 1, v = 1, θ = 0, ζ = 0,
Ω = 1 and D = 0.1. The transformed state space is Dx = [−2, 2] × [−2, 2]. 849 square cells
are used to discretize Dx. The transformed target set is formed by the cells that contain the
points Ψ(x,ẋ) = (±1, 0). Since the optimal control is bang-bang, we have U = {−1, 1}.

The uncontrolled response of the system is marginally stable about the origin since θ = 0
and ζ = 0. When the system impacts at y = h, it is reflected back in such a way that y
remains the same and the sign of ẏ is reversed. The crossing of any other boundary is an
irreversible process in the sense that D̄y acts as a sink cell [10].

To demonstrate the behavior of the uncontrolled system, we consider an uniformly dis-
tributed initial condition in Dy = [−0.86,−0.78]× [−0.64,−0.57]. The PDF of the response
after 3 time units is shown in Figure 10. At this time, only 22% of the probability remains in-
side of Dy indicating the strong effect of diffusion on the marginally stable system. It should
be noted that even the probability that remains inside Dy does not concentrate around the
target. Time evolutions of the relevant responses are shown in Figure 11.

The global optimal control solution obtained in the domain Dx is shown in Figure 12,
which indicates the existence of switching curves of the bang-bang optimal control. Numeri-
cal solutions of the switching curves are obtained with the curve fitting method by using this
control solution. These curves are superimposed in Figure 12. The switching curves as well
as the control solutions are mapped back to the physical domain Dy as shown in Figure 13.
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It is interesting to point out the qualitative differences in the controlled response for states
in the third quadrant of Dy. While for some states, marked with crosses, the control speeds
up the system favoring impact in others avoids it.

Consider now the same uniformly distributed initial condition in Dy. The controlled
system is found to converge to the steady state PDF shown in Figure 14 in 4 time units
with 98% of the probability remaining in Dy. As discussed in the previous example, the
switching curves in this example will split a uni-modal PDF of the response into a bi-modal
one during the transient. In particular, in the third quadrant of Dy just before impact, part
of the probability flow speeds up while the other slows down, thus splitting the PDF. The
time evolutions of the cost and moments of the response are shown in Figure 15. As before,
the controlled response (i) converges to the target set with high probability, (ii) minimizes
the cost and (iii) maximizes the probability of staying in the computational domain.

5 CONCLUSIONS

This paper presents a study on the optimal control problem of nonlinear stochastic systems
using Bellman’s principle of optimality, the short-time Gaussian approximation and the
Generalized Cell Mapping. Control problems of several challenging nonlinear systems with
fixed final state terminal conditions subject to state and control constraints are studied
to demonstrate the effectiveness of the approach. In particular, nonlinear systems with
a state dependent diffusion part and non-analytically closeable terms are considered. A
novel strategy based on multiple local Taylor expansions is proposed to handle the the non-
closeable terms of the differential equations for the moments of the state variables so that the
Gaussian closure method can be applied. The optimal control of a nonlinear vibro-impact
oscillator is studied by using transformation of variables. In the process, the dynamics, the
cost functional, the admissible state space, and the target set are transformed to a new
domain. Once the global feedback solution is obtained, we transform it back to the physical
domain where it is evaluated using GCM. In all numerical examples, the method leads to
controls with excellent performance. Computational improvements and extensions to higher
dimensional processes deserve further investigation. A rigorous study of convergence and
stability of the method is still elusive at this time, and should be pursued in the future.
Since the solution of optimal control problems of non-linear stochastic systems are difficult
to obtain and rare in the literature, this investigation offers a valuable contribution to the
field.
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Appendix A

Details on the derivation of the equations for the problem studied in Section 4.1 are
presented here. From Equation (10), we identify:

σ =

[

0 0
1 −µsgn(x2)

]

Q =2

[

Df Dvf

Dvf Dv

]

(25)

The Wong-Zakai correction term is given by ∆m = [0, ∆m]T , where

∆m =
1

2
σ2sQs2

∂

∂x2
σ22 =

1

2
(2Dvf + 2Dvµsgn(x2)) µsgn′(x2) (26)

Repeated indices are used to indicate summation. The diffusion term in the FPK equation
is given by:

σQσT =

[

0 0
0 2Df + 4µDvf sgn(x2) + 2µ2Dvsgn2(x2))

]

(27)

An equivalent single Wiener process leading to the same FPK equation has the diffusion

term σe = [0, σe]
T with σe = (2Df + 4µDvfsgn(x2) + 2µ2Dvsgn2(x2)))

1/2
. Hence, the Itô

SDE is given by dx(t) = (m(x,u) + ∆m) dt + σedB(t), which is Equation (12).

Appendix B

Details on the derivation of the equations for the problem studied in Section 4.2 are
presented here. From Equation (15) we find

σ = α

[

v 0
0 v

]

Q =2

[

D1 D12

D12 D2

]

(28)

where v is an arbitrary function of the state variables. The Wong-Zakai correction term is
given by ∆mj = 1

2
σksQsl

∂
∂xk

σjl. After some manipulations we obtain:

∆m1 = α2v(D1
∂v

∂x1
+ D12

∂v

∂x2
) (29)

∆m2 = α2v(D2
∂v

∂x2
+ D12

∂v

∂x1
)
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The diffusion term in the FPK equation is given by σQσT = 2α2v2Q. An equivalent Wiener
process leading to the same FPK equation has the diffusion terms:

σe1 =

[

2α2

(

D1v
2 + D12

∫

∂v2

∂x2
dx1

)]1/2

(30)

σe2 =

[

2α2

(

D2v
2 + D12

∫

∂v2

∂x1
dx2

)]1/2

Hence, the Itô SDE is given by:

dx1 =

(

cos(u) − x2v
√

x2
1 + x2

2

+ α2v(D1
∂v

∂x1
+ D12

∂v

∂x2
)

)

dt + σe1dB1 (31)

dx2 =

(

sin(u) +
x1v

√

x2
1 + x2

2

+ α2v(D2
∂v

∂x2
+ D12

∂v

∂x1
)

)

dt + σe2dB2

For uncorrelated white noise processes, the moment equations are:

ṁ10 = cos(u) − E
[x2v

r

]

+ α2D1E

[

v
∂v

∂x1

]

ṁ01 = sin(u) + E
[x1v

r

]

+ α2D2E

[

v
∂v

∂x2

]

ṁ11 = cos(u)m01 − E

[

x2
2v

r

]

+ α2D1E

[

x2v

r

∂v

∂x1

]

+ sin(u)m10 + E

[

x2
1v

r

]

+ α2D2E

[

x1v

r

∂v

∂x2

]

(32)

ṁ20 = 2m10 cos(u) − 2E
[x1x2v

r

]

+ 2α2D1E

[

x1v

r

∂v

∂x1

]

+ 2α2D1E
[

v2
]

ṁ02 = 2m01 sin(u) + 2E
[x1x2v

r

]

+ 2α2D2E

[

x2v

r

∂v

∂x2

]

+ 2α2D2E
[

v2
]

In the example, we used Taylor expansions for the functions v and v/
√

x2
1 + x2

2 up to the
second order. After substituting the polynomial approximations into Equation (32), the
expected values of the polynomial functions in terms of lower order moments are obtained.

Appendix C

The standard joint Gaussian conditional probability density function of x1 and x2 is given
by:

p(x1, x2, τ |x1(0), x2(0), 0) =
1

2πσ1σ2

√

(1 − ρ2)
exp

(− [α2
1 − 2ρα1α2 + α2

2]

2(1 − ρ2)

)

(33)

where ρ = E[(x1−m1)(x2−m2)]
σ1σ2

, mi = E[xi], σ2
i = E[(xi − mi)

2], αi =
(

xi−mi

σi

)

for i = 1, 2.

In these expressions, mi and σi and ρ are the means, standard variations and correlation
coefficient of the density function evaluated at time t = τ when the system starts from
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the deterministic initial condition x =(x1, x2)
T . Notice that for real variables, ρ always lies

between −1 and 1. Recall that expected values of an arbitrary function of x1 and x2 using
the Gaussian closure, can be computed from:

E[f(x1, x2)] =

∫ ∞

−∞

∫ ∞

−∞

[

f(x1, x2)

2πσ1σ2

√

(1 − ρ2)
exp

(− [α2
1 − 2ρα1α2 + α2

2]

2(1 − ρ2)

)

]

dx1dx2 (34)

The following expressions have been found.

E[sgn(xi)] = sgn

(

mi

σi

√
2

)

erf

( |mi|
σi

√
2

)

E[sgn′(xi)] =
2

σi

√
2π

exp

(

− m2
i

2σ2
i

)

(35)

E[xjsgn(xi)] =
2ρσ1σ2

σi

√
2π

exp

(

− m2
i

2σ2
i

)

+ mjE[sgn(xi)] E[sgn(xi)sgn′(xi)] = 0 (36)

E[(xj − mj)E[sgn(xi)]] = 0, E[(xj − mj)x
3
j ] = 3σ2

j (σ
2
j + m2

j) (37)

E[xjsgn′(xi)] =
−miρσ1σ2

σ3
i

√
2π

exp

(

− m2
i

2σ2
i

)

+ mjE[sgn′(xi)] E[sgn(xi)
2] = 1 (38)

E[xjsgn(xi)sgn′(xi)] = 0 E[xisgn(xi)] =
2σi√
2π

exp

(

− m2
i

2σ2
i

)

+ miE[sgn(xi)] (39)

E[xisgn(xi)sgn′(xi)] = 0, E[(xj − mj)x
3
i ] = 3ρσ1σ2(σ

2
i + m2

i ) (40)

E[xisgn′(xi)] = 0, E[x3
i ] = mi(3σ

2
i + m2

i ) (41)
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Figure 1: Vector field of the expected trajectories of the controlled response.
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Figure 2: Contours of the stationary PDF of the uncontrolled response of the mass block
system with dry friction damping.
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Figure 3: Contours of the stationary PDF for the controlled response of the mass block system
with dry friction damping.
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friction damping. Uncontrolled: (—) and controlled: (−−).
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Figure 5: Expected vector field of the uncontrolled trajectories and a single trajectory starting
from x = (0,−1).
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Figure 6: Time evolutions of E[L] and the first two order moments of the state variables of
the uncontrolled trajectories of the boat navigating in the vortex field. Dashed lines: moments
of x1. Continuous lines: moments of x2.
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Figure 7: Expected vector field of the controlled trajectories and single controlled trajectory
starting from x = (0,−1). The target cells are marked with crosses.
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Figure 8: Time evolutions of E[L] and the first two order moments of the state variables of
the controlled trajectories of the boat navigating in the vortex field. Dashed lines: moments
of x1. Continuous lines: moments of x2.
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Figure 9: The PDF of the controlled trajectories of the boat after 0.3 time units for the initial
condition x(0) = (0.8,−0.32). The initial condition is close to the discontinuity in optimal
controls.

Figure 10: The PDF of the uncontrolled response of the system with an impact barrier at
y = −1 after 3 time units. The system starts from the initial condition y = [−0.7,−0.7].
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Figure 11: Time evolutions of PD (−−), JD (−) and the moments m10 (− · −), m01 (−−),
m20 (− · −), and m02 (−−) of the uncontrolled response of the vibro-impact system.

Figure 12: Global optimal control solution of the vibro-impact system in the transformed
domain Dx. Cells marked with circles denote the regions where the optimal control is u∗ = û,
and cells marked with crosses represent the regions where the optimal control is u∗ = −û.
The continuous lines represent the switching curves
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Figure 13: Global optimal control solution of the vibro-impact system in the original domain
Dy. The legends are the same as in Figure 12.

Figure 14: Stationary PDF of the controlled response of the vibro-impact system.
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Figure 15: Time evolutions of PD (−−), JD (−) and the moments m10 (− · −), m01 (−−),
m20 (− · −), and m02 (−−) of the controlled response of the vibro-impact system.
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